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Abstract. In this paper we present a family of scalable preconditioners for matrices arising
in the discretization of H(div) problems using the lowest order Raviart-Thomas finite elements.
Our approach belongs to the class of “auxiliary space”-based methods and requires only the finite
element stiffness matrix plus some minimal additional discretization information about the topology
and orientation of mesh entities. We provide a detailed algebraic description of the theory, parallel
implementation and different variants of this parallel auxiliary space divergence solver (ADS) and
discuss its relations to the Hiptmair-Xu (HX) auxiliary space decomposition of H(div) [25] as well as
the auxiliary space Maxwell solver AMS [27]. An extensive set of numerical experiments demonstrate
the robustness and scalability of our implementation on large-scale H(div) problems with large jumps
in the material coefficients.
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1. Introduction. We are interested in the solution of linear systems derived
from discretizations of the weighted bilinear form

(1.1) adiv(u,v) = (α div u,div v) + (β u,v) ,

where α and β are positive piecewise-constant scalar coefficients, while u and v belong
to the space H(div) consisting of square-integrable vector functions with square-
integrable divergence [1]. The considerations in this paper can also be extended to
the more general case where the coefficients of adiv(·, ·) are given by symmetric and
positive definite matrices, see Section 6.2.

Linear systems related to (1.1) arise, for example, in the weak variational formu-
lation of the “grad-div” equation ∇α div u−βu = f using the Raviart-Thomas family
of div-conforming finite elements [41, 37]. The numerical solution of these problems
is important in a wide variety of applications, such as the preconditioning of mixed
finite element methods [11, 4], first order least-squares formulations of second order
elliptic problems [13] and regularization or pseudostress-vorticity formulation of the
Navier-Stokes equations [30, 14]. Recently, H(div) problems have also appeared in
the research on new radiation diffusion solvers and on new discretizations for vector
Laplacian in mixed form [46, 3], as well as in deriving preconditioners for mixed finite
element discretization of Brinkman equations (coupled Stokes and Darcy flow), [49].

Our interest is in the general development of efficient solvers for complicated
systems of partial differential equations (PDEs), and in particular, on parallel alge-
braic methods, which can take advantage of needed discretization information about
the problem only at the highest resolution. The matrices generated by the form
adiv(·, ·) are challenging from this perspective since classical algebraic solution tech-
niques struggle with the so-called “near-nullspace” which consists of low-frequency
eigenvectors corresponding to the nullspace of the divergence operator. Specifically,

∗Center for Applied Scientific Computing, Lawrence Livermore National Laboratory,
P.O. Box 808, L-561, Livermore, CA 94551, email: tzanio@llnl.gov, panayot@llnl.gov. This
work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344 (LLNL-JRNL-520391).

1



if we restrict (1.1) to curl fields u = ∇×Φ, v = ∇×Ψ, we obtain the singular part
of the associated H(curl) bilinear form, i.e.,

(1.2) adiv(u,v) = (β∇×Φ,∇×Ψ),

which should be explicitly addressed by any robust solver and cannot be handled
by simple relaxation on the fine grid. Our approach is to capitalize on the recently
developed parallel auxiliary space Maxwell solver AMS [27], which is a general alge-
braic solver that can handle the matrices stemming from (appropriate) finite element
discretizations of (1.2). AMS is based on the HX decomposition [25], coupled with
the Algebraic Multigrid (AMG) approach, which has had a lot of success on Poisson
and more general (scalar and vector) elliptic bilinear forms. Classical AMG couples
a simple relaxation scheme with a hierarchy of algebraically constructed coarse-grid
problems. Parallel implementations of AMG have been under intensive research and
development in the last decade, and several scalable software libraries are currently
available [22, 19].

While AMG and AMS have been successful on scalar and electromagnetic diffu-
sion problems, the low-energy curl fields in the “near-nullspace” of the H(div) form
adiv(·, ·) still pose significant challenges for algebraic solvers. In particular the semi-
definite form that is obtained after restricting the H(div)-form to div-free fields (as in
(1.2)) has its own large nullspace (namely the gradient fields). Geometric multigrid
methods have been developed to address these difficulties [5, 23], but their perfor-
mance on problems with variable coefficients has not been optimal. There has also
been some work in the algebraic multigrid community [18, 40, 29, 7]. Here we focus
on the recent auxiliary space approach proposed by Hiptmair and Xu in [25]. Some
implementation details and related further work in this direction can be found in
[47, 8].

The rest of the paper is organized as follows. In Section 2 we describe our notation
and list some basic known facts used in our theory. In Section 3 we derive a regular
decomposition result for parameter-dependent norms, which is then applied in Section
4 to establish the stability of the HX decomposition in the case of constant coefficients.
Next, we switch to general coefficients in matrix notation and describe, in Section 5,
the practical implementation and the different version of the auxiliary space divergence
solver (ADS). In Section 6 we report the results from several scalability studies on
H(div) problems with large jumps in the material coefficients and follow them with
our conclusions in Section 7.

2. Notation and Preliminaries. In two dimensions, the H(div) and H(curl)
spaces and their finite element discretizations are the same up to rotation, so the form
adiv(·, ·) can be efficiently preconditioned with the 2D version of the AMS precondi-
tioner which is currently available in the hypre library [26]. We will therefore focus
on problems based on (1.1), which are posed on a fixed three-dimensional polyhedral
domain Ω. Let Th be a tetrahedral or hexahedral meshing of the domain which is
globally quasi-uniform of mesh size h. For generality, we allow internal holes and tun-
nels in the geometry, i.e., Ω may have a multiply-connected boundary and need not be
simply connected. Meshes with such features arise naturally in practical applications.

Let L2(Ω), H1
0(Ω), H0(Ω; curl) and H0(Ω; div) be the standard Hilbert spaces

corresponding to our computational domain, with respective norms ‖·‖0, ‖·‖1, ‖·‖curl

and ‖·‖div, see [35, §3]. The subscript 0 signifies that the functions in the space satisfy
homogeneous Dirichlet boundary conditions on ∂Ω. Here, and in the rest of the paper,
we use boldface notation to denote vector functions and spaces of vector functions.
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In particular, H1
0(Ω) = H1

0 (Ω)3. The following characterization of the kernel of the
divergence operator can be found, e.g., in [2]:

(2.1) {u ∈ H0(Ω; div) : div u = 0} = ∇×H0(Ω; curl)⊕KT (Ω) .

Here,KT (Ω) is the so-called tangential cohomology space, which contains the curl- and
divergence-free functions in H0(Ω; div). This space appears naturally in electrostatic
applications, see §3.7 in [35].

In this paper we are concerned with the design of efficient algebraic solvers for
variational problems based on the bilinear form adiv(·, ·) and specifically discretized
with the lowest order Raviart-Thomas space Wh ⊂ H0(Ω; div) associated with the
triangulation Th. Since the degrees of freedom in Wh are just the fluxes across mesh
faces, this discretization space is sometimes referred to as “face finite elements”. As
it is well-known, the Raviart-Thomas elements are related to the space of the Nédélec
“edge” finite element (of first kind) Vh ⊂ H0(Ω; curl), as well as the spaces of continu-
ous piecewise-linear finite elements Sh ⊂ H1

0 (Ω) and discontinuous piecewise-constant
finite elements Qh ⊂ L2(Ω) as part of the de Rham complex. In particular,

(2.2) dWh ≡ {uh ∈ Wh : div uh = 0} = ∇× Vh ⊕KT,h ,

where KT,h is a discrete analog of KT (Ω), see Corollary 3.3 in [24]. These contin-
uous and discrete cohomology spaces have the same finite dimension, which equals
the number of tunnels in the geometry of Ω. A discussion about the practical imple-
mentation of KT,h can be found in §8.3.4 of [9]. Note that (2.2) implies that for any
uh ∈ dWh there are vV

h ∈ Vh and kh ∈ KT,h such that

(2.3) uh = ∇× vV
h + kh , with ‖∇ × vV

h ‖20 + ‖kh‖20 ≤ ‖uh‖20.

Let Sh be the vector counterpart of Sh. We will also make use of the standard
approximation property for H1 functions, which e.g., implies that any z ∈ H1

0(Ω)
admits a stable component zh ∈ Sh, that satisfies

(2.4) h−1‖z− zh‖0 + ‖zh‖1 ≤ C ‖z‖1 .

This component can be obtained by the application of an appropriate interpolation
operator, such as the quasi-interpolant from §2.1.1 in [39], or the Clément interpolant
[16]. Throughout this paper C stands for a generic constant, independent of the
functions and parameters involved in the given inequality.

Vector functions can also be approximated using the Raviart-Thomas interpola-
tion operator Πh ≡ ΠW

h . Let Fh be the set of faces in Th, and let Φf ∈ Wh be the
basis function associated with a given face f ∈ Fh having unit normal nf . Then, Πh

is defined by

(2.5) Πhw =
∑

f∈Fh

(∫
f

w · nf ds

)
Φf .

Note that we can apply Πh only to sufficiently smooth functions. More specifically,
the following result holds, see [5].

Theorem 2.1. Let z ∈ H1(Ω), then Πhz is well-defined and
(i) ‖z−Πhz‖0 ≤ C h ‖z‖1.
(ii) If div z ∈ div Wh, then div z = divΠhz.
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The first estimate above is simply (2.3) in [5], while the second one follows by
the commutativity between the divergence operator, Πh, and its Qh counterpart ΠQ

h :
divΠhz = ΠQ

h div z = div z since div Wh ⊂ Qh. For general z ∈ H1(Ω) we still have
the inequality part of (ii):

(2.6) ‖divΠhz‖0 ≤ ‖div z‖0

which stems from the fact that ΠQ
h is a projection in L2(Ω).

3. A Regular Decomposition Result for Parameter-Dependent Norms.
In this section, we establish a main auxiliary result which will be used in the following
section to prove the stability of the discrete HX decompositions in the case of constant
coefficients α and β. This result exploits an important stability estimate for saddle-
point problems involving the following parameter-dependent operator

(Lτz, v) = (z, v) + τ (∇z, ∇v),

where z, v ∈ H1
0(Ω) and τ > 0 is a given parameter. We denote the associated

τ -dependent norm with ‖z‖Lτ
=
√

(Lτz, z).
For a fixed value of τ , we consider the following Stokes problem: given u ∈

H0(Ω; div), find z ∈ H1
0(Ω) and p ∈ L2

0(Ω) ≡ {q ∈ L2(Ω) :
∫
Ω

q = 0} such that

(3.1) (z, θ) + τ (∇z, ∇θ) + (p, div θ) = 0, for all θ ∈ H1
0(Ω),

(div z, q) = (div u, q), for all q ∈ L2
0(Ω).

This problem is uniquely solvable due to the inf-sup condition

(3.2) c0‖p‖0 ≤ sup
θ∈H1

0(Ω)

(p, div θ)
‖∇θ‖0

,

which is valid for general Lipschitz domains Ω. A detailed proof of this fact can be
found in [10]. The solution z depends on τ and satisfies∫

Ω

div z =
∫

∂Ω

z · n = 0 =
∫

∂Ω

u · n =
∫
Ω

div u,

so the second equation in (3.1), implies

div z = div u.

Parallel to (3.2), we also consider an inf-sup estimate for Lτ which is uniform in
the parameter τ :

(3.3) c0

((
τI −∆−1

N

)−1
p, p

) 1
2 ≤ sup

θ∈H1
0(Ω)

(p, div θ)
‖θ‖Lτ

.

Here, ∆N is the (scalar) Laplace operator with homogeneous Neumann boundary
conditions, which is invertible for data f ∈ L2

0(Ω) with ψ = (−∆N )−1f ∈ H1(Ω) ∩
L2

0(Ω). Note that (3.2) implies the above inequality if τ ≥ C. Also, (3.3) has been
known for some time in the H2-regular case (e.g., for convex domain Ω), see [33],
[38], and the survey [33]. The case of more general domains Ω was reported recently
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in [32] based on an analytical result for bounded inverses of the divergence operator
found in [17]. For a more direct proof of (3.3) on general Lipschitz domains, we refer
to [28].

Theorem 3.1. Given u ∈ H0(Ω, div) and τ > 0, consider the parameter-
dependent problem (3.1). Its τ -dependent solution z ∈ H1

0(Ω) satisfies div z = div u
and

‖z‖20 + τ ‖∇z‖20 ≤
1
c20

(
‖u‖20 + τ ‖div u‖20

)
,

with the constant c0 from (3.3) which is independent of τ .
Proof. Using the first equation of (3.1) and the inf-sup estimate, we get

(3.4)
((
τI −∆−1

N

)−1
p, p

) 1
2 ≤ 1

c0

(
‖z‖20 + τ ‖∇z‖20

) 1
2 .

Since div u ∈ L2
0(Ω), ∆−1

N div u is well-defined and the Schwarz inequality implies

(p, div u) ≤
((
τI −∆−1

N

)−1
p, p

) 1
2 ((

τI −∆−1
N

)
div u, div u

) 1
2 .

Setting θ = z in the first equation of (3.1), using the fact that div z = div u and
combining the above two estimates yields

(Lτz, z) ≤ 1
c0

(
‖z‖20 + τ ‖∇z‖20

) 1
2
((
τI −∆−1

N

)
div u, div u

) 1
2 ,

or equivalently,

(Lτz, z) ≤ 1
c20

((
τI −∆−1

N

)
div u, div u

)
.

The desired estimate will now follow from
(
−∆−1

N div u, div u
)
≤ ‖u‖20. To show this,

let ψ ∈ H1(Ω) ∩ L2
0(Ω) be the solution of the problem −∆Nψ = div u. We have(

−∆−1
N div u, div u

)
= (div u, ψ) = (∇ψ, ∇ψ) ≤ ‖u‖20 ,

where the last inequality was derived from |(div u, ψ)| = |(u, ∇ψ)| ≤ ‖u‖0‖∇ψ‖0.
This completes the proof.

Remark 3.1. The above theorem is analogous to Theorem 3.1 from [27], but
unlike the H(curl) case, it does not provide separate control over the L2(Ω) and
H1

0(Ω) norms of the function z. As reported recently, in [32], the stronger version of
the stability result does hold, i.e., there is a z ∈ H1

0(Ω) such that div z = div u with
the norm bounds

‖z‖0 ≤ C ‖u‖0 and ‖z‖1 ≤ C ‖div u‖0,

holding separately.
In what follows, we were able to analyze the auxiliary space preconditioner in

a manner similar to [27] based on the weaker stability result from Theorem 3.1 by
establishing the stability of the HX decomposition for constant α and β, setting τ = α

β .
5



4. The HX Decomposition. The existence of certain stable decompositions
of Wh is at the heart of the construction of all auxiliary space divergence solvers. In
this section, we give an overview of several such decompositions and establish their
stability. Even though the following theoretical estimates have been already essentially
presented in [25] and are a natural extension of those in [27], we include them here for
completeness, as well as to emphasize the connections between the different H(curl)
and H(div) approaches.

The stable decomposition theory that we consider in the present paper cannot
directly be applied to the adiv(·, ·) bilinear form (1.1) with variable coefficients, but
some insights can nevertheless be gained if we consider constant coefficients. In what
follows, we take α and β to be positive constants in Ω and further assume that

(4.1) βh2 ≤ Cα.

Note that this is not a restriction in practice since the stiffness matrix corresponding
to (1.1) is well-conditioned in the case α ≤ Cβh2 when the mass term dominates the
stiffness matrix.

Our starting point is Theorem 3.1 with τ = α
β . We apply it to a finite element

function u = uh ∈ Wh. The corresponding function z satisfies the requirements of
Theorem 2.1 (ii) and therefore,

div uh = divΠhz .

This means that uh −Πhz ∈ dWh, so by (2.3) we get a semi-discrete decomposition
of Wh with properties summarized in the next proposition.

Proposition 4.1. Let α and β be positive coefficients. Then any uh ∈ Wh can
be decomposed as

uh = Πhz +∇× uV
h + kh ,

where z ∈ H1
0(Ω), div z = div uh, uV

h ∈ Vh and kh ∈ KT,h depend on the constants
α and β. Furthermore,

β‖Πhz‖20 + β‖∇ × uV
h ‖20 + β‖kh‖20 ≤ C

(
α‖div uh‖20 + β‖uh‖20

)
,

where C is independent of α and β.
Proof. First, observe that the stability estimate from Theorem 3.1

(4.2) α‖∇z‖20 + β‖z‖20 ≤ C
(
α‖div uh‖20 + β‖uh‖20

)
together with (4.1) and the inverse inequality in Wh imply

α‖∇z‖20 ≤ C
(
h−2α+ β

)
‖uh‖20 ≤ C αh−2 ‖uh‖20.

That is, we have

(4.3) h‖∇z‖0 ≤ C‖uh‖0 .

Therefore, Theorem 2.1 (i) shows

β‖Πhz‖20 ≤ β‖z‖20 +β‖z−Πhz‖20 ≤ β‖z‖20 +Ch2β‖z‖21 ≤ C
(
α‖div uh‖20 + β‖uh‖20

)
.

The desired estimate now follows by the triangle inequality and (2.3).
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There are several ways to further approximate the non-discrete component z, thus
ending up with various discrete stable decompositions. We will focus on approxima-
tion involving zh ∈ Sh which leads to the HX decomposition from [25].

Theorem 4.2. Any uh ∈ Wh can be decomposed as follows

uh = vh + Πhzh +∇× uV
h + kh ,

where vh ∈ Wh, zh ∈ Sh, uV
h ∈ Vh and kh ∈ KT,h, and the following stability

estimates hold:

(αh−2+ β)‖vh‖20 + |||zh|||2 + β
(
‖∇ × uV

h ‖20 + ‖kh‖20
)
≤ C

(
α‖div uh‖20 + β‖uh‖20

)
.

The above estimate is uniform with respect to the constant positive parameters α and
β. The norm ||| · ||| stands for one of the following expressions:

(4.4) |||zh|||2 =

{
α‖zh‖21 + β‖zh‖20 (a)
α‖divΠhzh‖20 + β‖Πhzh‖20 (b)

Proof. We choose zh based on (2.4). It has the stability and approximation
properties:

‖zh‖0 ≤ ‖z‖0 + Ch ‖z‖1 and h−1 ‖z− zh‖0 + ‖zh‖1 ≤ C ‖z‖1.

For the first term, vh ≡ Πh(z− zh), we have

‖vh‖0 ≤ ‖z− zh‖0 + ‖(I −Πh)(z− zh)‖0 ≤ Ch (‖z‖1 + ‖z− zh‖1) ≤ Ch ‖z‖1.

The desired bound now follows from (4.1) and (4.2)(
αh−2 + β

)
‖vh‖20 ≤ C

(
α+ βh2

)
‖z‖21 ≤ Cα‖∇z‖20 ≤ C

(
α‖div uh‖20 + β‖uh‖20

)
.

Next, we estimate the terms in (4.4),(a). Using (4.1) and (4.2) again we have,

|||zh|||2 = α‖zh‖21 + β‖zh‖20 ≤ C
(
α‖z‖21 + β

(
‖z‖20 + Ch2‖z‖21

))
≤ C

(
α‖z‖21 + β‖z‖20

)
≤ C

(
α‖div uh‖20 + β‖uh‖20

)
.

For the terms in (4.4),(b), we have

‖Πhzh‖0 ≤ ‖Πhzh − zh‖0 + ‖zh‖0 ≤ Ch‖zh‖1 + ‖zh‖0

as well as (due to (2.6))

‖divΠhzh‖0 ≤ ‖div zh‖0 ≤ C‖zh‖1.

Therefore (4.1) implies

α‖divΠhzh‖20 + β‖Πhzh‖20 ≤ C
(
α‖zh‖21 + β‖zh‖20

)
so the estimate for (4.4),(b) follows from the case (4.4),(a). Finally, the bounds for
the terms ∇× uV

h and kh were already established in Proposition 4.1.
Following [25], we proceed to further decompose the uV

h component based on the
HX decomposition of Vh. Specifically, there are vV

h ∈ Vh, zV
h ∈ Sh, pV

h ∈ Sh and
nh ∈ KN,h such that

uV
h = vV

h + Π V
h zV

h +∇pV
h + nh ,
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where Π V
h is the Vh counterpart of Πh and KN,h is the finite dimensional discrete

normal cohomology space consisting of curl- and divergence-free functions in Vh (the
dimension of KN,h equals the number of internal holes in Ω). In particular [27], we
have the stability estimate:

h−2‖vV
h ‖20 + ‖∇ ×Π V

h zV
h ‖20 ≤ C ‖∇ × uV

h ‖20 .

Plugging this into the result of Theorem 4.2 we get a stable decomposition of Wh

involving two nodal auxiliary spaces and only relatively small terms from Vh and Wh.
Theorem 4.3. Any uh ∈ Wh admits a decomposition

uh = vh + Πhzh +∇× vV
h +∇×Π V

h zV
h + kh ,

where vh ∈ Wh, zh ∈ Sh, vV
h ∈ Vh, zV

h ∈ Sh, and kh ∈ KT,h, and the following
stability estimate holds uniformly in α and β:

(αh−2+ β)‖vh‖20 + |||zh|||2 + β ‖kh‖20 + βh−2‖vV
h ‖20 + β‖∇ ×Π V

h zV
h ‖20

≤ C
(
α‖div uh‖20 + β‖uh‖20

)
.

“Scalar” HX-decomposition. We next discuss a component-wise (or “scalar”)
version of the HX decomposition which utilizes only scalar subspaces similar to the
H(curl) case in [27]. Given a vector function zh = (z1

h, z
2
h, z

3
h) introduce

Π 1
h z

1
h = Πh(z1

h, 0, 0) , Π 2
h z

2
h = Πh(0, z2

h, 0) , Π 3
h z

3
h = Πh(0, 0, z3

h) .

By construction then, we have

Πhzh =
3∑

k=1

Π k
h z

k
h .

We similarly define the scalar components of the Nédélec interpolation, such that
Π V

h zV
h =

∑3
k=1 Π V,k

h zV,k
h . With these definitions, we have the following “block-

diagonal” version of Theorem 4.3.
Theorem 4.4. Any uh ∈ Wh admits the decomposition

uh = vh +
3∑

k=1

Π k
h z

k
h + kh +∇× vV

h +∇×
3∑

k=1

Π V,k
h zV,k

h ,

where vh ∈ Wh, zk
h ∈ Sh, vV

h ∈ Vh, kh ∈ KT,h, and zV,k
h ∈ Sh satisfy the following

stability estimate

(αh−2+ β)‖vh‖20 +
3∑

k=1

(
α‖div Π k

h z
k
h‖20 + β‖Π k

h z
k
h‖20
)

+ β‖kh‖20

+βh−2‖vV
h ‖20 +

3∑
k=1

(
β‖∇ ×Π V,k

h zV,k
h ‖20

)
≤ C

(
α‖div uh‖20 + β‖uh‖20

)
.

Proof. In the proof of Theorem 4.2 we showed that for any zh ∈ Sh

(4.5) α‖divΠhzh‖20 + β‖Πhzh‖20 ≤ C
(
α‖zh‖21 + β‖zh‖20

)
.
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Therefore,

3∑
k=1

α‖div Π k
h z

k
h‖20 + β‖Π k

h z
k
h‖20 ≤ C

3∑
k=1

(
α‖zk

h‖21 + β‖zk
h‖20
)
≤ C

(
α‖zh‖21 + β‖zh‖20

)
.

Similarly, ‖∇ ×Π V
h zV

h ‖20 ≤ C ‖zV
h ‖21 implies

3∑
k=1

‖∇ ×Π V,k
h zV,k

h ‖20 ≤ C

3∑
k=1

‖zV,k
h ‖21 ≤ C‖zV

h ‖21,

and the desired stability estimate follows from the bounds established for 4.4(a).
To get a feeling about the bilinear forms associated by the above stable decom-

position with the zk
h- and zV,k

h -auxiliary spaces, it is instructive to consider the case
of triangular and tetrahedral meshes where div Sh ⊂ Qh and ∇ × Sh ⊂ Wh. These
imply divΠhzh = div zh and ∇×Π V

h zV
h = ∇×zV

h , so the leading terms in the nodal
bilinear forms are

‖div Π 1
h zh‖20 = ‖∇ · (zh, 0, 0)‖20 = ‖∂xzh‖20

and

‖∇ ×Π V,1
h zh‖20 = ‖∇ × (zh, 0, 0)‖20 = ‖∂yzh‖20 + ‖∂zzh‖20

which are just restricted versions of the Laplacian operator.

5. The Auxiliary Space Divergence Solver. In this section we describe the
construction of the auxiliary space H(div) preconditioner based on the stable decom-
positions from the previous section. We transition from operator to matrix notation in
order to clarify the practical implementation of the algorithms, as well as to facilitate
the implementation discussion. Matrices will be typeset using a Roman style font.

5.1. Discrete Gradient and Curl Matrices. Let Ah be the stiffness matrix
corresponding to adiv(·, ·) on Wh. The matrix representation of the mappings

ϕ ∈ Sh 7→ ∇ϕ ∈ Vh and uV
h ∈ Vh 7→ ∇ × uV

h ∈ Wh

are commonly called the discrete gradient and discrete curl matrices and will be fur-
ther denoted by Gh and Ch, respectively. These matrices are usually readily available
in applications since they are simply topological tables describing the edges/faces of
the mesh Th in terms of its vertices/edges. For example, if e is an edge with vertices v1
and v2, the only two nonzero entries of Gh in the row corresponding to e are (Gh)e,v1

and (Gh)e,v2 . Similarly, if f is a face with edges e1, e2, e3, etc., the only nonzero
entries of Ch in the row corresponding to f are (Ch)f,e1 , (Ch)f,e2 , (Ch)f,e3 , etc. Each
nonzero entry in these matrices is either 1 or −1, depending on the edge and face
orientations implied by the bases of Vh and Wh.

As shown in [27], the matrix representation of the Nédélec interpolation operator
Π V

h can be constructed based only on Gh and the vertex coordinate vectors x, y and
z. Specifically,

ΠV
h =

[
ΠV,1

h , ΠV,2
h , ΠV,3

h

]
where each block has the same sparsity structure as Gh and entries (ΠV,1

h )e,v1 =
(ΠV,1

h )e,v2=
(Ghx)e

2 , (ΠV,2
h )e,v1= (ΠV,2

h )e,v2=
(Ghy)e

2 , (ΠV,3
h )e,v1= (ΠV,3

h )e,v2=
(Ghz)e

2 .
9



We next describe an alternative derivation of this representation, which extends
to the H(div) case. Let u1,0,0 be the vector of degrees of freedom corresponding to the
global constant function (1, 0, 0) in Vh. Note that (1, 0, 0) ∈ Vh and that u1,0,0 = Ghx
due to (1, 0, 0) = ∇x. Let ϕx

v1
and ϕx

v2
be the x-component basis functions in Sh

associated with the vertices v1 and v2 of a fixed edge e. Since (ϕx
v1

+ϕx
v2

)|e = (1, 0, 0)|e,
we have

(5.1) (ΠV,1
h )e,v1 + (ΠV,1

h )e,v2 =
(
Π V

h (1, 0, 0)
)
|e = (u1,0,0)e .

On the other hand, ϕx
v1

is linear on e, so

(ΠV,1
h )e,v1 =

∫
e

ϕx
v1
· te ds = |e|ϕx

v1
(ce) · te =

|e|tx
e

2
,

where |e| is the measure and ce is the center (midpoint) of e. Since the last expression
is independent of v1, we conclude that

(5.2) (ΠV,1
h )e,v1 = (ΠV,1

h )e,v2 =
(u1,0,0)e

2

and similarly for the other blocks of ΠV
h . Note that, while (5.1) holds for any inter-

polation operator that reproduces constants, the equality of the interpolation weights
in (5.2) is specific to the lowest order Nédélec and linear spaces.

Proposition 5.1. The matrix representation, Πh =
[
Π1

h, Π2
h, Π3

h

]
, of the lowest

order Raviart-Thomas interpolation operator Πh can be computed based solely on Ch,
Gh and the vertex coordinate vectors x, y and z. Specifically, if

(5.3) u1,0,0 = −ChΠV,2
h z , u0,1,0 = −ChΠV,3

h x , u0,0,1 = −ChΠV,1
h y ,

then for a fixed face f with vertices v1, v2, . . . , vk the nonzero entries in the f-row
of Πh are

(Π1
h)f,v1 = (Π1

h)f,v2 = · · · = (Π1
h)f,vk

=
(u1,0,0)f

k
,

(Π2
h)f,v1 = (Π2

h)f,v2 = · · · = (Π2
h)f,vk

=
(u0,1,0)f

k
,

(Π3
h)f,v1 = (Π3

h)f,v2 = · · · = (Π3
h)f,vk

=
(u0,0,1)f

k
.

Proof. Note that u1,0,0 is the representation of the global constant function (1, 0, 0)
in Wh since (1, 0, 0) = ∇× (0, z, 0). Analogous to the ΠV,1

h discussion above, it is easy
to show that the entries of Π1

h in the row corresponding to f are equal and sum to
(u1,0,0)f . Indeed, by linearity (

∑k
i=1 ϕx

vi
)|f = (1, 0, 0)|f , while due to the use of lowest

order spaces

(Π1
h)f,v1 =

∫
f

ϕx
v1
· nf ds = |f |ϕx

v1
(cf ) · nf =

|f |nx
f

k
,

where |f | is the measure and cf is the center of gravity of f . This gives us the above
formula for Π1

h. The expressions for the other blocks of Πh can be derived in a similar
manner.

10



Based on the definition of Πh (2.5), we have

((u1,0,0)f , (u0,1,0)f , (u0,0,1)f )T = |f |nf .

The vector on the right can be easily evaluated for any star-shaped face f . Specifically,
let ~V1, ~V2, . . . , ~Vk ≡ ~V0 be the coordinates of the vertices, listed in counterclockwise
order according to the normal nf , and let ~V be any point in the interior of the face,
such that f is star-shaped with respect to ~V . Then the triangular subdivision of f
induced by ~V and the vertices gives us

|f |nf =
1
2

k−1∑
i=0

(~Vi − ~V )× (~Vi+1 − ~V ) .

This is independent of the choice of ~V , which can be seen by expanding the cross
product:

|f |nf = 1
2

∑k−1
i=0

(
~Vi × ~Vi+1 − ~Vi × ~V − ~V × ~Vi+1

)
= 1

2

∑k−1
i=0

~Vi × ~Vi+1 − 1
2

∑k−1
i=0

(
~Vi × ~V − ~Vi+1 × ~V

)
= 1

2

∑k−1
i=0

~Vi × ~Vi+1 ,

giving the formulas

(5.4) |f |nf =
1
2

(
k−1∑
i=0

yizi+1 − ziyi+1,

k−1∑
i=0

zixi+1 − xizi+1,

k−1∑
i=0

xiyi+1 − yixi+1

)
.

These expressions are algebraically identical to the ones from Newell’s method for
computing the normal of a general 3D polygon [45], where, e.g., the first sum is
written in the form

∑k−1
i=0 (yi − yi+1)(zi + zi+1). They also appear in other contexts,

such as cell-centered discretizations of compressible flows on general polygonal cells
[31].

Though (5.4) enables us to easily compute the entries of Πh based solely on the
vertex coordinates, there is an implicit assumption that each face can enumerate its
vertices in a counterclockwise direction. Since this can be challenging to achieve in the
algebraic solver settings that we are interested in, we choose to compute the entries
of the interpolation in our implementation through (5.3) instead.

5.2. Matrix Form of ADS Preconditioners. In what follows, we drop the
term kh from the HX-decompositions studied in the previous section and will not
take it into account in the construction of our preconditioners. Note that this is not a
restriction (for the case of general domain Ω), since kh belongs to a finite dimensional
subspace KT,h which gives rise to an isolated part of the spectrum of the resulting
preconditioned system. This isolated spectrum can be handled well (implicitly) by
the preconditioned conjugate gradient method. For some discussion in this direction,
we refer to [51].

Following [12], we can now reinterpret the stable decompositions developed in the
previous section from a purely algebraic perspective. For example, the matrix form
of Theorem 4.2 in the case (4.4)a asserts that any Raviart-Thomas vector u can be
decomposed as

u = v + Πhz + ChuV ,

11



such that

(DAh
v, v) + (AhΠhz,Πhz) + (AhChuV ,ChuV ) ≤ C (Ahu,u) ,

where DAh
is the diagonal of Ah. We remark that for constant α and β, we have

(DAh
v, v) ∼ (αh−2+ β)‖vh‖20, so the above decomposition and stability estimate can

be viewed as generalizations of the statement of Theorem 4.2 to variable coefficients.
Assuming that this algebraic stable decomposition holds (the theorem established it
only for constant coefficients), we can apply classical Schwarz theory or adapt the
results from [50], to derive an optimal preconditioner for Ah. We list several of the
resulting auxiliary space methods corresponding to the different stable decompositions
in additive form below. In all cases RAh

denotes a point smoother for Ah (such as
Gauss-Seidel), which is known to be spectrally equivalent to D−1

Ah
, see [48].

(A) HX decomposition (4.4)a with re-discretized auxiliary matrices:

Bh = RAh
+ ΠhBΠh

ΠT
h + ChBCh

CT
h ,

where BΠh
correspond to (vector) AMG V-cycle for the vector Poisson prob-

lem (α∇u,∇v) + (βu,v) discretized on Sh, while BCh
correspond to AMS

V-cycle for the semi-definite Maxwell problem (β∇×uV ,∇×vV ) discretized
on Vh.

(B) HX decomposition (4.4)b with variational auxiliary matrices:

Bh = RAh
+ ΠhBΠh

ΠT
h + ChBCh

CT
h ,

where BΠh
correspond to (vector) AMG V-cycle for ΠT

h AhΠh, while BCh

correspond to AMS V-cycle for CT
h AhCh.

(C) Nodal HX decomposition from Theorem 4.3:

Bh = RAh
+ ΠhBΠh

ΠT
h + RCT

h AhCh
+ (ChΠV

h )BChΠV
h

(ChΠV
h )T ,

where BΠh
and BChΠV

h
correspond to (vector) AMG V-cycles for ΠT

h AhΠh

and (ChΠV
h )T Ah(ChΠV

h ), respectively.
(D) Scalar HX decomposition from Theorem 4.4:

Bh = RAh
+

3∑
k=1

Πk
h BΠk

h
(Πk

h)T + RCT
h AhCh

+
3∑

k=1

(ChΠV,k
h ) BChΠV,k

h
(ChΠV,k

h )T ,

where BΠk
h

and BChΠV,k
h

correspond to AMG V-cycles for (Πk
h)T Ah Πk

h, and

(ChΠV,k
h )T Ah(Ch ΠV,k

h ), respectively.
The above list offers a variety of preconditioners for Ah which are optimal, at least

in the case of constant coefficients, provided that the subspace AMG/AMS solvers
are optimal. Since some of the subspace matrices are singular, one needs to use
convergent smoothers on all levels of the AMG/AMS hierarchy in order to make sure
that the subspace solvers are non-divergent. This is particularly important in parallel
computations, where we employed variants of the parallel `1-GS convergent smoother
[27, 6]. Further stabilization of the AMS solver, such as the one discussed in Section
4.3.1 of [12], is also possible.

In our experience, the variational approaches (B), (C) and (D) offer the best
combination of robust performance and low requirements for additional discretization
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information. In practice, we use multiplicative versions of the preconditioners and
implement options (C) and (D) through particular choices of the AMS cycle type in
(B). In this sense, the construction and usage of the new solver is very similar to that
of AMS [27], and in general, its relationship to AMS is analogous to the relationship
between AMS and AMG.

5.3. Parallel Implementation. We implemented a parallel version of the aux-
iliary space divergence solver options described in the previous section under the name
ADS in the hypre library [26]. ADS employs hypre’s scalable algebraic multigrid solver
BoomerAMG [22] and its auxiliary space Maxwell solver AMS [27].

To solve an H(div) problem, the user provides the linear system, the discrete
gradient and curl matrices and the vertex coordinates, as described in the following
code segment:

HYPRE_Solver solver;
HYPRE_ADSCreate(&solver);

/* Set discrete curl matrix */
HYPRE_ADSSetDiscreteCurl(solver, C);
/* Set discrete gradient matrix */
HYPRE_ADSSetDiscreteGradient(solver, G);
/* Set vertex coordinates */
HYPRE_ADSSetCoordinateVectors(solver, x, y, z);

HYPRE_ADSSetup(solver, A, b, x);
HYPRE_ADSSolve(solver, A, b, x);

The interpolation matrices and coarse grid operators are then constructed automati-
cally.

The behavior of the algorithm can be influenced by a number of tuning parame-
ters. In their default settings, ADS is a multiplicative solver based on decomposition
(B), which uses a convergent parallel hybrid smoother and single BoomerAMG V-
cycle (with HMIS coarsening [44] and extended interpolation [43]) for the algebraic
problem in Sh, and an AMS multiplicative V-cycle with similar options for the alge-
braic problem in Vh. We note that these parameters were optimized with respect to
the total time to solution. Different choices are available, which give methods with
better convergence properties (but typically slower in practice).

6. Numerical Experiments. This section is devoted to assessing the numeri-
cal performance and parallel scalability of our implementation on a variety of H(div)
problems, and in particular on problems where the coefficients are discontinuous and
have large jumps. In all experiments we use ADS as a preconditioner in a conjugate-
gradient (CG) iteration. The input matrices and vectors for the tests, were con-
structed in parallel using the modular finite element library MFEM [34]. In fact, we
simply used slightly modified versions of MFEM’s Example 4p (ex4p.cpp in release
2.0) to run all of the experiments.

The following notation was used to record the results: np denotes the number
of processors in the run, N is the total problem size, nit is the number of ADS-CG
iterations, while tsetup, tsolve and t denote the average times (in seconds) needed
for setup, solve, and time to solution (setup plus solve), respectively. The code was
executed on the ATLAS cluster at LLNL, which has 2.4GHz AMD Opteron processors
and InfiniBand DDR interconnect.
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Fig. 6.1. Geometry of the two material subdomains test problem (left) and extruded processor
subdomains (np = 3) with the magnitude of the solution for α = β ≡ 1 at the coarsest level (right).

6.1. Weak Scalability Tests. In this section we consider a set of weak scal-
ability runs, where we try to keep the problem size per processor the same, while
increasing the number of processors. Scalable algorithms are important, because they
allow us to solve larger and larger problems in the same amount of time by using
more processors. Though we strove for perfect load balance, the unstructured nature
of the problems led to somewhat varying problem sizes in the different processors.

We first apply ADS to a simple test problem which models a soft/hard material
enclosure. Specifically, we consider two materials on the unit cube pictured in Figure
6.1: the enclosed material given by the union of the two internal cubes, [ 14 ,

1
2 ]3∪[ 12 ,

3
4 ]3,

and the external material constituting the rest of the cube. We chose this problem
because it has been used in the past to test solver robustness on problems with strongly
discontinuous coefficients, see e.g., [51].

To investigate the scalability of ADS, we discretized the form (1.1) keeping ap-
proximately 130K face degrees of freedom per processor. We used the lowest order
Raviart-Thomas finite elements on a regular tetrahedral mesh, with homogeneous
Dirichlet boundary conditions u · n = 0 on the surface of the unit cube. The right-
hand side was chosen to correspond to the unit constant vector function (1, 1, 1), and
the initial guess was a vector of zeros. The convergence tolerance was a reduction of
the `2 residual norm by a factor of 1010.

The resulting number of iterations when varying one of the α and β parameters,
while fixing the other, are presented in Table 6.1. We observe fairly uniform conver-
gence with respect to the jumps in the coefficients, as well as the number of processors
and the total problem size. The only case when there is some deterioration in the it-
eration counts is when α is very small in the exterior material. This is not common in
practice. A possible explanation for this behavior is the use of coefficient-independent
norm in the stopping criteria.

To further elaborate on these results, we compare in Figure 6.2 the total time to
solution (the sum of setup and solve times) of ADS and the commonly used diagonally-
scaled conjugate gradient solver on a problem with large jump in β. The plot shows
that the new solver is much more scalable and clearly outperforms traditional solvers.
In particular, ADS is able to solve a problem of size more than 200 million, with eight
orders of magnitude jumps in β, in 103 seconds (19 iterations) on 1536 processors.

We next compare the performance of ADS to that of AMS and BoomerAMG
14



np N p
−8 −4 −2 −1 0 1 2 4 8

α = 1, β ∈ {1, 10p}
3 399,360 14 14 13 13 13 13 15 15 15

24 3,170,304 16 16 16 16 16 16 17 17 17
192 25,264,128 18 18 18 17 17 18 18 19 18

1536 201,719,808 18 18 18 18 18 18 19 20 19
β = 1, α ∈ {1, 10p}

3 399,360 23 23 18 15 13 13 14 14 14
24 3,170,304 27 27 20 17 16 16 16 16 16

192 25,264,128 30 30 22 19 17 18 18 18 18
1536 201,719,808 32 32 23 20 18 18 18 18 18

Table 6.1
Number of ADS-CG iterations for the problem on a cube with α and β having different values

in the regions shown in Figure 6.1.
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Fig. 6.2. Time to solution for the two material subdomains problem on the unit cube with
α = 1 and β ∈ {1, 10−4}: ADS versus a Jacobi preconditioner (DS-CG).

applied to curl-curl and div-grad bilinear forms on the same mesh and with the same
coefficients. We pick the 192 processor case and run the three methods as precondi-
tioners in CG with the same parameters that we used for AMS above. The results in
Table 6.2 confirm that these algebraic solvers have fairly similar behavior with respect
to coefficient jumps.

To give some idea about the relative cost of the above AMG, AMS and ADS cycles,
we reporting below some relevant operator complexities. For AMG, the operator
complexity is defined as the sum of the number of nonzeros in the fine- and all coarse-
grid matrices, divided by the number of nonzeros in the fine-grid matrix. In the
above runs, the average AMG operator complexity was 1.22. For AMS, we measure
the operator complexities of the subspace AMG solvers for the 4 nodal problems
corresponding to Gh, ΠV,1

h , ΠV,2
h and ΠV,3

h . On average those were 1.23, 1.38, 1.39 and
1.39 respectively Note that each of these nodal problems is of the same dimension
(2,146,689) as the AMG problem in Table 6.2. Similarly, for ADS, we computed the
average operator complexities of the subspace AMG solvers for the 6 nodal problems
corresponding to ΠV,1

h , ΠV,2
h , ΠV,3

h , Π1
h, Π2

h and Π3
h. The results were 1.41, 1.41, 1.41,
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N p
−8 −4 −2 −1 0 1 2 4 8
α = 1, β ∈ {1, 10p}

AMG-CG 2,146,689 20 20 20 20 20 20 19 19 19
AMS-CG 14,827,904 18 18 18 18 18 18 19 24 25
ADS-CG 25,264,128 18 18 18 17 17 18 18 19 18

β = 1, α ∈ {1, 10p}
AMG-CG 2,146,689 20 19 20 20 20 21 21 20 20
AMS-CG 14,827,904 21 21 20 19 18 19 21 22 22
ADS-CG 25,264,128 30 30 22 19 17 18 18 18 18

Table 6.2
Number of iterations for BoomerAMG, AMS and ADS applied as a preconditioner to a div-

grad, curl-curl and grad-div problem on the cube from Figure 6.1 with different stiffness coefficient
α and mass coefficient β. The problems were run on 192 processors.

Fig. 6.3. Logarithmic plots of the permeability coefficient in the SPE10 problem: x/y-component
(left) and z-component (right). Note the two distinct soil layers, the stretched mesh elements and
the large jumps in the coefficient between them.

1.54, 1.54 and 1.54 respectively. Accounting for the cycle types used, we can combine
these complexities to conclude that each AMS cycle in Table 6.2 is equivalent to
smoothing plus 7.7 AMG cycles, while each ADS cycle is equivalent to smoothing
plus 17.9 AMG cycles. If we also factor in the ratio of the global problem sizes (6.9
for AMS and 11.8 for ADS), we can summarize by saying that each of the AMS and
ADS cycles above has an approximate cost proportional to smoothing plus that of 1.1
and 1.5 AMG cycles respectively for a div-grad problem of the same size.

6.2. The SPE10 Problem. We next consider an H(div) linear system related
to Model 2 of the tenth SPE comparative solution project [42, 15]. This problem,
which we refer to as SPE10, is a challenging benchmark for reservoir simulation codes.
It is posed on a rectangular box with dimensions 1200 × 2200 × 170 meshed with a
60 × 220 × 85 Cartesian grid. As shown in Figure 6.3, the relative permeability
coefficient in this dataset is a highly anisotropic diagonal matrix (with the same x-
and y-components) which is piecewise-constant and has large jumps between the mesh
elements.

We take α = 1 in (1.1) and set β to be the permeability matrix from the SPE10
dataset. While this is not a direct discretization of the original reservoir simulation
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problem, here we use this setup in order to test the performance of our solver on
problems with such coefficients. The right-hand side was chosen to correspond to the
unit constant vector function (1, 1, 1), and the initial guess was a vector of zeros. We
do not impose any boundary conditions on the Raviart-Thomas space. Furthermore,
we apply a more robust version of ADS to this system, by adjusting its parameters
to use 3 relaxation sweeps in RAh

, as well as the `1-GS smoother (implemented as in
[27, 6]) and a strength threshold of 0.9 in the subspace BoomerAMG solvers BΠk

h
and

BChΠV,k
h

.

np nit tsetup tsolve t/nit

1 23 83.5 1107.
2 25 193.0 603.5 1.62×
4 23 178.7 276.5 1.61×
8 24 56.5 164.2 2.15×

16 23 32.1 81.1 1.87×
32 23 12.4 43.3 2.03×
64 24 5.9 22.9 2.02×

128 25 2.7 12.8 1.94×
256 24 2.3 7.2 1.57×
512 25 3.9 4.5 1.18× 1632 64 128 256 512
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Table 6.3
Strong scaling for the SPE10 problem from Section 6.2. The iteration-adjusted speedup of the

time to solution between each doubling of the number of processors is reported in the last column of
the table. The speedup with respect to one processor is plotted on the right.

We perform a strong scaling study for this problem by applying ADS-CG to the
resulting linear system of fixed size 3, 403, 000 using different number of processors.
The convergence tolerance was set to 10−6. The results from runs on up to 512
processors are shown in Table 6.3. The small variation in the iteration counts are due
to the difference in the parallel smoothers in ADS and its BoomerAMG components.
We observe reasonable scaling factors on 1–256 processors and, for example, we are
able to solve the problem in less than a minute on 32 processors and less than 10
seconds on 256. Further strong scaling is prevented by dominating communication
cost as illustrated in the plot on the right of the table.

6.3. The Crooked Pipe Problem. We next consider a benchmark problem
related to radiation diffusion simulations [20, 21, 36].

The problem is posed on a cylindrical “butterfly”-type grid with two material
subdomains as shown in Figure 6.4. The adiv(·, ·) coefficients in the two materials
were set to α ∈ {1.641, 0.00188} and β ∈ {0.2, 2000}, and we model the diffusion
of an initially prescribed flux on one of the quarter circle boundaries. Besides the
jumps in both coefficients, this problem is also challenging due to the highly stretched
elements in the neighborhood of the material interface which have been added to
resolve the diffusion layer.

As in the previous section, we perform a strong scalability study by applying the
solver to a discretization of the problem of size 361, 692 using up to 64 processors. The
convergence tolerance was 10−14. We also used a more robust version of ADS with a
strength threshold of 0.6 and no aggressive coarsening in the subspace BoomerAMG
solvers.
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Fig. 6.4. The mesh for the Crooked Pipe problem (top left) with its splitting into two material
subdomains (bottom). A dense layer of highly stretched elements (zoom shown top right) has been
added to the neighborhood of the material interface in the exterior subdomain in order to resolve the
physical diffusion.

np nit tsetup tsolve t/nit

1 42 9.4 345.2
2 41 8.6 155.3 2.11×
4 42 4.5 80.4 1.98×
8 42 2.6 45.6 1.76×

16 43 1.5 22.7 2.04×
32 49 0.9 15.2 1.71×
64 44 1.2 9.3 1.38×
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Table 6.4
Strong scaling for the Crooked Pipe problem from Section 6.3. The iteration-adjusted speedup

of the time to solution between each doubling of the number of processors is reported in the last
column of the table. The speedup with respect to one processor is plotted on the right.

The result in Table 6.4 are similar to those from the SPE10 problem. In particular,
ADS handles well both the jumps in α and the high convergence tolerance in this case.
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The scaling begins to saturate on 32 processors, which is to be expected given the
relatively small problem size.

7. Conclusions. The auxiliary space AMG based on the recent Hiptmair-Xu
decomposition from [25] provides a number of scalable algebraic preconditioners for a
variety of unstructured H(div) problems discretized with the Raviart-Thomas finite
elements.

Our ADS implementation in the hypre library requires some additional user in-
put besides the problem matrix and right-hand side; namely, the discrete gradient
and curl matrices and the coordinates of the vertices of the mesh, but it can handle
unstructured problems with variable coefficients. In model simulations the perfor-
mance on such problems is very similar to that on problems with α = β = 1. In real
applications, ADS-CG can be orders of magnitude faster than diagonally scaled CG
(DS-CG).

The behavior of ADS on H(div) problems is qualitatively similar to that of AMG
on (scalar and vector) elliptic problems or that of AMS on H(curl) problems dis-
cretized on the same mesh. Thus, any further improvements in AMG and AMS, will
likely lead to additional improvements in ADS.
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